
Odin TeleSystems Inc.
Programmer's Guide
for

OTX DSP C54x
Software Development Kit

Doc. No. 1412-1-SAA-1007-1

Rev. 1.1

December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

Copyright

Copyright (C) Odin TeleSystems Inc., 1999-2008. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior written consent of Odin TeleSystems Inc., 800 E. Campbell
Road, Suite 334, Richardson, Texas, 75081-1873, U. S. A.

Trademarks

Odin TeleSystems, the Odin Logo, OTX, Vidar-5x16-PCI, Vidar-5x4-ASM, Vidar-5x8-PMC, and Thor-2-PCM-
CIA are trademarks of Odin TeleSystems Inc., which may be registered in some jurisdictions. Other trademarks
are the property of their respective companies.

Changes

The material in this document is for information only and is subject to change without notice. While reasonable
efforts have been made in the preparation of this document to assure its accuracy, Odin TeleSystems Inc.,
assumes no liability resulting from errors or omissions in this document, or from the use of the information con-
tained herein.

Odin TeleSystems Inc. reserves the right to make changes in the product design without reservation and notifica-
tion to its users.

Warranties

THE SOFTWARE AND ITS DOCUMENTATION ARE PROVIDED “AS IS” AND WITHOUT WARRANTY
OF ANY KIND. ODIN TELESYSTEMS EXPRESSLY DISCLAIMS ALL THE WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE. ODIN TELESYSTEMS DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET ANY REQUIREMENTS, OR
THAT THE OPERATIONS OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR
THAT DEFECTS WILL BE CORRECTED. FURTHERMORE, ODIN TELESYSTEMS DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY,
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVISE GIVEN BY ODIN TELESYS-
TEMS OR ODIN TELESYSTEMS’ AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY.

UNDER NO CIRCUMSTANCE SHALL ODIN TELESYSTEMS INC., ITS OFFICERS, EMPLOYEES, OR
AGENTS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING DAMAGES FOR LOSS OF BUSINESS, PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE AND ITS DOC-
UMENTATION, EVEN IF ODIN TELESYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. IN NO EVENT WILL ODIN TELESYSTEMS’ LIABILITY FOR ANY REASON EXCEED THE
ACTUAL PRICE PAID FOR THE SOFTWARE AND ITS DOCUMENTATION. SOME JURISDICTIONS
DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL AND CONSE-
QUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.
This document is published by:

Odin TeleSystems Inc. Printed in U. S. A.

Odin TeleSystems Inc.
800 East Campbell Road, Suite 334
Richardson, Texas 75081-1873
U. S. A.

http://www.OdinTS.com

3(31)
Programmer's Guide
Table of Content
1. Table of Content
1. Table of Content...3

2. Introduction..4

3. Distribution ..5

4. Needed DSP Products, Tools, and Documentation..5

5. C54x DSP Overview..8
5.1 Memory Organization ... 8
5.2 Host Port Interface .. 9
5.3 Serial Ports .. 10
5.4 Program Loading... 10

6. Introduction to DSP Telecom Applications ...10
6.1 Data Receiver .. 10
6.2 Data Sender ..11
6.3 Data Converter .. 12

7. OTX DSP Data Architecture ...12
7.1 Data Formats ... 14

8. OTX DSP Control Architecture...14
8.1 OTX Host Driver API ... 14

8.1.1 DSP Initialization ... 14
8.1.2 Host to DSP Communication ... 16
8.1.2.1 I/O - Control Codes .. 18
8.1.3 DSP to Host Communication ... 19

8.2 DSP SDK API... 20
8.2.1 DSP Initialization ... 20
8.2.2 Host to DSP Communication ... 21
8.2.3 DSP to Host Communication ... 22
8.2.4 Data Access .. 23

9. SDK API ..24
9.1 Api Functions.. 24
9.2 Call-back functions ... 25

10. Demo Applications ..26
10.1 Getting Started .. 26
10.2 Included Files .. 26

10.2.1 DSP SDK Files ... 26
10.2.2 DSP Demo Application Files ... 27
10.2.3 Host Demo Application Files ... 27

10.3 Compiling and Linking ... 28
10.3.1 DSP Demo Applications... 28
10.3.2 Host Demo Applications .. 28

10.4 Demo Program Flow... 28

11. Debugging..30
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

4(31)
Programmer's Guide
Introduction
2. Introduction

The OTX (Odin Telecom FrameworX) DSP (Digital Signal Processor) C54x Software
Development Kit (SDK) enables the users of OTX Hardware to develop their own
DSP applications. The OTX DSP C54x SDK supports the Texas Instruments
TMS320C54x family of Digital Signal Processors. The SDK can be used to develop
DSP applications for the applicable OTX ASM Resource modules, such as Vidar-5x4-
ASM-PRO and Vidar-5x4-ASM-EX, or for the OTX DSP NIC and Resource boards,
such as Thor-2-PCMCIA-PRO and Thor-2-PCMCIA-EX. The different OTX prod-
ucts may utilize different members of the C54x DSP family. For example, Vidar-5x4-
ASM-PRO utilize TMS320C5416 DSPs, while Vidar-5x4-ASM-EX utilize
TMS320C5410A DSPs. This document uses TMS320C5416 in all of its examples.
Although certain technical details, such as amount of memory, processor speed, etc.,
may vary between the different DSPs, the fundamental concepts remain valid for the
whole DSP family.

The OTX DSP C54x SDK provides the software to allows user written DSP applica-
tions to be loaded by and communicate with user written host applications, as illus-
trated in Figure 1. More specifically, the SDK provides the user with the following:

• Minimal DSP Kernel which allows user applications to be loaded and run through
the host bus (PCI, PCIe, or PCMCIA)

• Demo applications providing examples and full source code for working DSP
applications.
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

5(31)
Programmer's Guide
Distribution
• Command passing mechanism for communication between applications running in
the host and in the DSP.

Figure 1. The DSP SDK allows user written DSP applications to be loaded
by and communicate with a user written host application.

3. Distribution

The DSP SDK is distributed in a pkzipped file named OtxDspSdk<Rev>.zip, where
Rev is the Revision number of the SDK. To use the DSP SDK, you will also need the
Software Development Kit for the OTX Driver, as well as the Driver itself. The
needed software is listed in Table 1.

It is important the all the used software, i.e. the Driver, the Driver SDK, and the
DSP SDK are of the same revision. Always check the Odin homepage at http://
www.OdinTS.com/sw.htm for updates to the drivers. If you are updating the
software, always update all of them to the same revision state.

TABLE 1. Odin Software needed for DSP Application Development

Odin Product Number Description
SAA-1007-1 OTX DSP C54x SDK
SCA-1002-1 OTX Adapter Family Driver Set.
SAA-1006-1 OTX Hardware Driver Software Development Kit

Application

I/O Writes/Reads
Memory Writes/Reads

C Function Calls:

Interrupts

OTX Hardware Driver

 foo(dataIn, &dataOut); Events(&data)Application
Programming
Interface

PC Extension Bus

OTX Hardware DSP

User written
Host

Application

User written
DSP

Application

User written
Host
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

6(31)
Programmer's Guide
Needed DSP Products, Tools, and Documentation
4. Needed DSP Products, Tools, and Documentation

Before you venture into the DSP application development, you should verify that you
have the needed tools and documentation available. First of all, you should have
access to the Texas Instruments documentation on the TMS320C54x family of Digital
Signal Processors. Recommended minimum documentation set is listed in Table 2.

This documentation can be downloaded from the Texas Instruments Web site (http://
www.ti.com) or they can be attained from your local Texas Instruments re-seller or
distributor.

In addition to the basic documentation on C54x DSPs, you should have access to
Odin’s OTX adapter boards containing TMS320C54x DSP resources. Examples of
OTX boards with these resources are:

• Thor-2-PCMCIA-PRO: 2 TMS320C5416s

• Vidar-5x4-ASM-CST: 4 TMS320C5416s

• Vidar-5x4-ASM-PRO: 4 TMS320C5416s

• Vidar-5x4-ASM-EX: 4 TMS320C5410A

The needed Odin Hardware is listed in Table 3.

TABLE 2. Recommended Texas Instruments TMS320C54x Documentation

Texas Instruments
Literature Number Description

SPRU131D TMS320C54X DSP Reference Set. Volume 1: CPU and Periph-
erals

SPRU172 TMS320C54X DSP Reference Set. Volume 2: Mnemonic
Instruction Set

SPRU179A TMS320C54X DSP Reference Set. Volume 3: Algebraic
Instruction Set

SPRS039A TMD320C54x Fixed Point Digital Signal Processors Data Sheet

TABLE 3. Odin Hardware needed for Custom DSP Application Development

Odin Product Number Description
HAA-xxxx-y OTX Adapter Board with on-board TMS320C54x DSP

resources.
HMA-1057-1 Hermod-JTAG Code Composer Debug Probe (Used with OTX

PCI Adapters)
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

7(31)
Programmer's Guide
Needed DSP Products, Tools, and Documentation
And finally, to actually produce executable DSP applications, you will need software
development tools, like Assembler, C Compiler and Debugger. The OTX adapters
support standard Texas Instruments C Development tools. These tools can be pur-
chased from any TI reseller. The corresponding original manufacturer’s product num-
bers are listed in Table 4.

You can find a listing of Texas Instruments distributors at http://www.ti.com and a
listing of Spectrum Digital products at at http://www.spectrumdigital.com

TABLE 4. Development tools from Any TI and DSP Research re-sellers

Manufacturer /
Product Number Product Description

Texas Instruments /
TMDS324L855-02

TMS320C5000 PC C Compiler/Assembler/Linker v3.83 for
Windows

Spectrum Digital. /
701905

XDS510 USB PLUS JTAG Emulator
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

8(31)
Programmer's Guide
C54x DSP Overview
5. C54x DSP Overview

This chapter provides a brief introduction to the Texas Instruments (TI) TMS320C54x
DSP technology and to the terminology used later in this document. For in-depth
information on the architecture, functionality, and operation of the C54x DSPs, please
refer to the Texas Instruments documentation listed in Table 2 on page 6.

The processors in the TI TMS320C54x family are 16-bit fixed-point digital signal
processors. The C54x DSPs feature a Harvard architecture with separate program and
data buses providing a high-degree of parallelism during execution. The performance
of the processors vary between 40 and 200 MIPS (Million Instructions Per Second)
with faster and faster devices being introduced to the family.

5.1 Memory Organization

The C54x memory consists of three separate memory spaces:

• Program Space

• Data Space

• I/O Space

All C54x devices contain Random Access Memory (RAM) and certain C54x devices
may also contain Read Only Memory (ROM). The on-chip ROM can be part of the
program space or data space. On certain DSPs the ROM memory contains look-up
tables for A-law and u-law companding.

The RAM memory comes in two different flavors:

• Dual Access RAM (DARAM)

• Single Access RAM (SARAM).

DARAM can be accessed twice per machine cycle which means that the DSP can read
from and write to a single DARAM block during one processor clock cycle. SARAM
can only be accesses once for read or for write during one processor clock cycle.

Different DSP versions within the C54x family contain different amounts of internal
memory and support different amounts of external memory. The data memory space
of the TMS320C5416 device addresses up to 64K of 16-bit words. This device uses a
paged extended memory scheme in program space to allow access of up to 8192K of
program memory. The device contains 64K-word´ 16-bit of on-chip dual-access RAM
(DARAM) and 64K-word´ 16-bit of on-chip single-access RAM (SARAM). The
DARAM is composed of eight blocks of 8K words each. Each block in the DARAM
can support two reads in one cycle, or a read and a write in one cycle. Four blocks of
DARAM are located in the address range 0080h-7FFFh in data space, and can be
mapped into program/data space by setting the OVLY bit to one. The other four blocks
of DARAM are located in the address range 18000h-1FFFFh in program space. The
DARAM located in the address range 18000h-1FFFFh in program space can be
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

9(31)
Programmer's Guide
C54x DSP Overview
mapped into data space by setting the DROM bit to one. The SARAM is composed of
eight blocks of 8K words each. Each of these eight blocks is a single-access memory.
For example, an instruction word can be fetched from one SARAM block in the same
cycle as a data word is written to another SARAM block. The SARAM is located in
the address range 28000h-2FFFFh, and 38000h-3FFFFh in program space.

For more details of the TMS320C5416 memory map please refer to TI document
SPRS095.The internal memory is always available. Certain OTX DSP boards also
provide external memory. For the exact amount of memory available on your OTX
product, please refer to the Technical Description of the specific OTX product.

5.2 Host Port Interface

The Host Processor communicates with the OTX on-board DSPs through a Host Port
Interface (HPI). HPI is a access mechanism implemented in certain C54x DSPs which
allows an easy information exchange between the host CPU and the DSP. The HPI is
either an 8-bit or a 16-bit parallel interface port (depending on the DSP model) . The
HPI allows both the host CPU and the DSP to share a portion of the on-chip memory.
On TMS320C5416 DSPs there is 2 kWords of HPI memory available and it is located
between addresses 1000h - 2000h.

The OTX Driver and the OTX SDK utilizes the on-chip HPI memory to pass control
messages and user data between the host CPU and DSP.

5.3 Serial Ports

DSPs utilize serial ports to communicate with external serial devices. The TI
TMS320C54x DSPs provide 3 types of serial ports:

• Standard synchronous serial ports

• Buffered serial ports

• Time-Division multiplexed (TDM) serial ports

On OTX Adapters the DSP serial ports are connected Time-Division Multiplexed
(TDM) Highways. These highways transmit user data in to the DSPs for processing
and out from after processing. The DSPs on OTX adapters utilize Buffered Serial
Ports (BSPs). The buffered serial ports automatically transfers incoming data into the
DSP memory and automatically sends outgoing data from the DSP memory. This
autobuffering feature greatly reduces processor overhead for data transfer.

5.4 Program Loading

The OTX DSPs run a small kernel (operating system) which is provided with the OTX
Driver. When the DSPs are booted up, the kernel is loaded to the DSP through the
Host Port Interface by the host CPU. Once the kernel is running, then new application
programs can be loaded through the HPI by host. Once the application program is run-
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

10(31)
Programmer's Guide
Introduction to DSP Telecom Applications
ning, the kernel is removed from the memory and the application program retains a
full control of the processor.

An important feature of OTX adapters is that all the DSP code is uploaded by the host
CPU and that no code is “hard-coded” in any type of persistent on-board devices. This
makes the OTX adapters very maintainable as many features can be added or
enhanced with simply changing the software.

6. Introduction to DSP Telecom Applications

Digital Signal Processors in telecom are used to manipulate digitized signals using
mathematical algorithms. The applications supported by OTX DSPs can be roughly
divided into three 3 categories: Data Receivers, Data Senders, and Data Converters.
Each of these categories of DSP applications are briefly introduced in the following
chapters.

6.1 Data Receiver

Data receivers are applications that receive serial data and apply an algorithm to the
data. This type of DSP Data Receiver application can be thought of containing 3 inter-
faces: Data interface, Control Interface and Event interface (Figure 2). The receiver
application receives serial data through a serial port (data interface). The receiver
application is controlled by the host application through the control interface and it
can send asynchronous notification towards the host through the event interface.

Figure 2. DSP Data Receiver Application.

Typical examples of Receiver applications include detectors, such as DTMF Detector,
MF Detector, and Data Receivers, such as HDLC Receiver, Fax/Modem Receiver, etc.

Serial Data Stream In

Events

Control

DSP Receiver
Application
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

11(31)
Programmer's Guide
Introduction to DSP Telecom Applications
6.2 Data Sender

Data Senders are applications that generate serial data using mathematical algorithms.
A typical Data Sender is shown in Figure 3 illustrating how the application generates
outgoing serial data based on host control.

Figure 3. DSP Data Sender Application.

Examples of Data Sender applications include various Tone Generators, HDLC Send-
ers, Modem/Fax Senders, etc.

6.3 Data Converter

Data Converters are applications that take in serial data, apply algorithms to the data,
and output a serial stream of data in another format. A Data Converter application is
shown in Figure 4 illustrating how serial data in is converted into another format
under host control.

Figure 4. DSP Data Converter Application.

Serial Data Stream Out

Events

Control

Data Sender
Application

Serial Data Streams In Serial Data Streams Out

Events

Control

Data Converter

Application
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

12(31)
Programmer's Guide
OTX DSP Data Architecture
Examples of Data Converters include A-law to u-law converters, voice codecs, etc.

7. OTX DSP Data Architecture

This chapter describes how the serial TDM data is transferred on the OTX boards
between the on-board highways and the DSP memory. As was mentioned in the previ-
ous chapter, the OTX boards utilize the buffered DSP serial ports to connect to the
TDM highways. The buffered serial ports automatically transfer incoming data into
the DSP memory and transmit outgoing data from the memory without almost any
processor overhead. The overview of the data architecture (C5416) is illustrated in
Figure 5.

Figure 5. TMS320C5416 Data Buffers.

The buffered serial port autobuffers occupy two memory regions: Receive buffer start-
ing at OTXDSP_BSP_RXBUF_START and transmit buffer
OTXDSP_BSP_TXBUF_START. The autobuffers are circular buffers which are con-
tinuously being filled and emptied as the data from the external highway comes in
(receive buffer) and goes out (transmit buffer). The sizes of the buffers are
OTXDSP_BSP_RXBUF_SIZE and OTXDSP_BSP_TXBUF_SIZE, which in the SDK

8000h 32k

0000h 0

OTXDSP_BSP_TXBUF_ADDR

OTXDSP_BSP_TXBUF_SIZE

OTXDSP_BSP_RXBUF_ADDR

OTXDSP_BSP_RXBUF_SIZE
Highway In

Highway Out

BSPCE RH=0

BSPCE RH=1

BSPCE XH=0

BSPCE XH=1

Interrupts

DSP Memory

TDM Frames
32 bytes (8 bit time-slots)
per frame
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

13(31)
Programmer's Guide
OTX DSP Control Architecture
demo applications are set to 800 words. This means that both buffers can contain up to
50 2.048 Mbit/s PCM frames (50 frames x 32 bytes/frame = 1600 bytes = 800 words).

The DSP generates interrupts when the buffers are half-full and when they are full.
The receive interrupts are used to activate the corresponding Interrupt Service Rou-
tines (ISRs) which will then copy data from the receive autobuffer to the user’s
receive buffer freeing room for new data to be received. Respectively, the transmit
interrupts are used to activate an ISR to fill data from the user’s transmit buffer to the
transmit autobuffer.

7.1 Data Formats

The user data on the highways are typically transmitted in companded 8-bit A-law or
u-law formats. A-law and u-law (ITU-T G.711) are standard companding techniques
which allow 13-bit (A-law) or 14-bit (u-law) samples to be represented with 8-bit val-
ues. However, most algorithms are designed to be used with linear values, thus before
the companded 8-bit samples can be processed, they have to be decompanded.

Internally, C54x DSPs process data in 16-bit samples. Thus, before processing the
incoming data is typically uncompanded into 16-bit linear samples. Correspondingly,
the internal 16-bit samples are companded before they are transmitted out. A typical
flow of data through a DSP application is illustrated in Figure 6.

Figure 6. Typical data flow through a DSP application.

8. OTX DSP Control Architecture

When developing host and DSP applications, the user will utilize two APIs:

• the Host Driver API for host applications

• the DSP SDK API for DSP applications

Serial Data

Stream In

Re
ce

iv
e

Au
to

bu
ffe

r Transform

16-bit
format

data from
input format

to internal

U
se

r B
uf

fe
r

U
se

r B
uf

fe
r

Tr
an

sm
it

Au
to

bu
ffe

r
Serial Data

Stream Out

Transform

data
format

data from
internal 16-bit

to output

Events

Control

User

Algorithm
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

14(31)
Programmer's Guide
OTX DSP Control Architecture
8.1 OTX Host Driver API

This chapters describes host API used to write host application that communicate with
DSP applications. For an in-depth discussion on the host API, please refer to “Pro-
grammer’s Guide for OTX Hardware API,” Odin document number 1412-1-SAA-
1006-1.

8.1.1 DSP Initialization

To utilize DSP resources on OTX boards, the application must first initialize the
DSPs. The initialization is performed in two steps.

1. Open Physical DSP Devices

2. Load DSP software

To open a physical DSP Device, the application uses the OtxDrvOpenPhysicalDe-
vice() function, as illustrated in Example 1.

Example 1. Opening of a physical DSP device.

After the DSP device has been opened and the application has attained a handle to the
device, the Digital Signal Processor can now be booted up to run a program using the
OtxDspRunProgram() function. The OtxDspRunProgram() function takes three
parameters: A handle to the DSP device, name and path of the application file to be
loaded, and label for the entry point of the application. The loading of the OTX stan-
dard SPM1 module is illustrated in Example 2.

#define DSP_SOURCE_ID 0
#define DSP_NO 0
OTX_RESULT nResult;
OTX_HANDLE hMyOTXBoard;
OTX_HANDLE hMyDsp;
OTX_HANDLE hMyEventQueue;

:

// Open a Physical DSP Device #0 on an OTX Board
// Returns handle to the DSP Device
nResult = OtxDrvOpenPhysicalDevice(hMyOTXBoard, OTX_DEVICE_DSP,
DSP_NO, DSP_SOURCE_ID, hMyEventQueue, &hMyDsp);
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

15(31)
Programmer's Guide
OTX DSP Control Architecture
Example 2. Loading of DSP program.

Once the DSP program is running, it can now make a new set of logical devices avail-
able for the user. For example, the OTX Signal Processing Module 1 (OtxSpm1) pro-
gram packages (which is distributed with the OTX Hardware driver) provides logical
devices such as DTMF Detector and Generator, HDLC Sender and Receiver, etc.
These can now accessed and controlled as any other logical devices in the system, and
do not even have to be aware that these specific logical devices have been imple-
mented with DSP software.

If a user written DSP application is loaded, then the host application can request a cre-
ation of a special logical device: OTX_LDEVICE_USER_APPLICATION, as shown in
Example 3.

Example 3. Creation of a User Written DSP Logical Device.

The function OtxDrvCreateLogicalDevice() returns a handle to the user implemented
logical device. From the host application point of view, this handle can now be used
like any other handle to a logical device.

8.1.2 Host to DSP Communication

Once a user written DSP application is running, the host can now send data to the DSP
application using the OtxDspIoControl() function. The OtxDspIoControl function is
modeled after the Win32 System Services DeviceIoControl() function. The OtxDspIo-
Control() function prototype is shown in Example 4.

// Loads and runs the standard OTX SPM1 application on
// a DSP device
nResult = OtxDspRunProgram(hMyDsp, “OtxSpm1.out”, “_c_int00”);

#define LOGIC_DEV_SOURCE_ID 1
OTX_HANDLE hMyLogicDev;

result = OtxDrvCreateLogicalDevice(
 hMyDsp,
 OTX_LDEVICE_USER_APPLICATION,
 hMyEventQueue,
 LOGIC_DEV_SOURCE_ID,
 &hMyLogicDev);
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

16(31)
Programmer's Guide
OTX DSP Control Architecture
Example 4. OtxDspIoControl() function prototype.

The nIoControlCode parameter in the OtxDspIoControl() function are used to indicate
the action to be performed by the DSP application. Some of the codes reserved for
standard actions performed automatically by the host driver. It is the responsibility of
the DSP application developer to ensure that the used codes are coordinated between
the host application and the DSP application.

The pInBuf parameter in OtxDspIoControl() can be used to pass arbitrary data to the
DSP application. If the DSP application needs to return data to the host application,
then the data will be copied to the user allocated pOutBuf. Also, pnBytesReturned will
return the size of the returned data.

The OtxDspIoControl() function can be called in two modes:

• Blocking: The driver will wait for the DSP software to complete the whole opera-
tion before returning control back to the calling program. A time-out value can be
provided to the function to force a return upon timeout expiry and to prohibit a
potential dead-lock situation.

• Non-Blocking: The driver function returns immediately. If the function was able
to complete operation without waiting, it will return the result of the operation.
Otherwise the function will return OTX_S_PENDING and schedule a task to be
completed when the needed data becomes available. The application can now con-
tinue its operations while the requested task will be completed in the background.
Once the task has been completed, a driver event will be provided to the applica-
tion through the appropriate event queue. The event will contain a reference value
that was provided in the non-blocking function call.

The OtxDspIoControl() function call can be made blocking by providing
OTX_TASK_SYNC as the task reference. An example of a blocking function call with
a 5 second time-out and without a time-out are shown in Example 6.

OTX_RESULT OtxDspIoControl(
 IN OTX_HANDLE hDspDevice, // Handle to the physical DSP device
 IN OTX_UINT32 nIoControlCode, // I/O Control Code to be passed
 IN void *pInBuf, // Pointer to the user allocated input Buf
 IN OTX_UINT32 nInBufSize, // Size of the input Buffer
 IN void *pOutBuf, // Pointer to the user allocated output Buf
 IN OTX_UINT32 nOutBufSize, // Size of the output Buffer
 OUT OTX_UINT32 *pnBytesReturned, // Number of Bytes returned
 IN OTX_TASK_REF nTaskRef, // Task Ref for non-blocking calls
 IN OTX_TIME nWaitMaxMs // Max blocking wait time
);
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

17(31)
Programmer's Guide
OTX DSP Control Architecture
Example 5. Examples of Blocking calls to OtxDspIoControl().

A positive (>= 1) task reference value will cause a non-blocking function call and a
creation of a background task. Once the task has completed or if the time-out has
expired, a driver event will be provided to the user. The driver event contains the task
reference value as given to the function. This allows the application to match the
events to the tasks. An example of a non-blocking function call is shown in Example
6.

Example 6. An example of a non-blocking function call OtxDspIoControl().

If the user application does not care to keep track of what tasks have been completed,
the application can use a special OTX_TASK_ASYNC task reference, or alternatively
the same positive task reference can be used over and over again.

8.1.2.1 I/O - Control Codes

The I/O-Control codes used with the OtxDspIoControl() function are 16-bit codes
with the 3 most significant bits reserved for system use (See Example 7).

OTX_RESULT nResult;
OTX_HANDLE hMyDsp;

// Blocking call with 5 second time-out
nResult = OtxDrvIoControl(hMyDsp, ..., OTX_TASK_SYNC, 5000);

// Blocking call without time-out
nResult =
OtxDrvIoControl(hMyDsp, ..., OTX_TASK_SYNC, OTX_TIME_INFINITY);

#define MY_TASK_REF
OTX_RESULT nResult;
OTX_HANDLE hMyDsp;

// Non-Blocking Function call ...
nResult = OtxDspIoControl(hMyDsp, ..., MY_TASK_REF, 5000);

if (nResult == OTX_S_PENDING) {
 // Task created, execution continues immediately
} else {
 // Function call completed, Success or failure
}

Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

18(31)
Programmer's Guide
OTX DSP Control Architecture
Example 7. I/O Control Code Structure.

The user codes must have the most significant bit set to ‘0’. Certain I/O-control codes
are reserved for use with standard API functions. The reserved codes are listed in
Table 5.

TABLE 5. Reserved I/O Control Codes.

Code Macro Value Meaning
OTXDSP_SDK_IO_NO_COMMAND 0x8000 Reserved. Not to be used an IO Control Code
OTXDSP_SDK_IO_CREATE 0x8001 Issued by the driver when the standard OtxDrvCre-

ateLogicalDevice() API function is called.
OTXDSP_SDK_IO_ENABLE 0x8002 Issued by the driver when the standard OtxDrvEn-

able() API function is called.
OTXDSP_SDK_IO_DISABLE 0x8003 Issued by the driver when the standard OtxDrvDis-

able() API function is called.
OTXDSP_SDK_IO_CONNECT 0x8004 Issued by the driver when the standard OtxDrv-

ConnectLogicalDevice() API function is called.
Data passed is struct OtxDspSdkIoInConnectS

OTXDSP_SDK_IO_DISCONNECT 0x8005 Issued by the driver when the standard OtxDrvDis-
connectLogicalDevice() API function is called.
Data passed is struct OtxDspSdkIoInDisconnectS

OTXDSP_SDK_IO_RESET 0x8006 Issued by the driver when the standard OtxDrvRe-
set() API function is called.

 |1 1 1 1 1 1
 |5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 |-------------------------------+
 |S|C|P| Code |
 |-------------------------------+

 S - SDK System IO Codes - reserved
 1 - SDK Reserved System Codes
 0 - User application code

 C - Data Complete - reserved
 0 - There is more data pending for this IO Code
 1 - Data is complete for this IO Code.

 P - Padded octet for Data
 0 - Even number of octets were transferred.
 Data length (in words) reflects actual number of
 data octets transferred (2*octets).
 1 - Odd number of octets were transferred. Data
 length includes one padded octet.

 Code - the IO Control code value
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

19(31)
Programmer's Guide
OTX DSP Control Architecture
8.1.3 DSP to Host Communication

The DSP to host communication is handled through asynchronous driver events and
through Event Queues. When the DSP application wants to signal the host application,
it can place a driver event to the Event Queue associated with the physical DSP
device. The host application can wait for these events using the OtxDrvWaitForSin-
gleEvent() function, which will place the host thread to sleep until the driver has a
notification event available. The events generated by the DSP application can be
retrieved from the event queue with function OtxDrvGetEventData(), as demonstrated
in Example 8.

Example 8. Retrieval of driver events from an event queue.

If the event has any data to be passed from the DSP to the Host associated with it, the
data can be retrieved with the OtxDspReadData() function. The OtxDspReadData()
function can be used to retrieve data associated with both spontaneously generated
events and for events generated upon completion of non-blocking function calls. The
OtxDspReadData() function prototype is shown in Example 9.

Example 9. OtxDspReadData() function prototype.

OtxEventDataS eventData;
 :

// Wait for a driver event
OtxDrvWaitForSingleEvent(hMyNotificationEvent,OTX_TIME_INFINITY);

// Check for driver events from previously created event queue
nResult = OtxDrvGetEventData(hMyEventQueue, &eventData);

do { // Loop to retrieve all the events
 result = OtxDrvGetEventData(hMyEventQueue, &eventData);

 if (result == OTX_S_OK) {
 // We have a driver event
 ...
 }
} while (result == OTX_S_OK);

OTX_RESULT OtxDspReadData(
 IN OTX_HANDLE hDspDevice, // Handle to the physical DSP device
 IN OTX_TASK_REF nTaskRef, // Reference to associated task
 IN void *pOutBuf, // Pointer to the user allocated output buf
 IN OTX_UINT32 nOutBufSize, // Size of the output buffer
 OUT OTX_UINT32 *pnBytesReturned // Number of Bytes returned
 OUT OTX_UINT32 *pnIoControlCode, // I/O Control Code the
 // returned data is associated with
);
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

20(31)
Programmer's Guide
OTX DSP Control Architecture
8.2 DSP SDK API

8.2.1 DSP Initialization

The DSP initialization within the DSP application involves initializing the processor,
setting up interrupt vectors, initializing the serial ports, and the host port interface. The
source code for performing this initialization is provided with the SKD and can be
used “as is” by most DSP applications.

8.2.2 Host to DSP Communication

Once the host application has sent a command request using the OtxDspIoControl()
API function, the OTX Host driver will copy the command code and the data in to the
DSP Host Port Interface (HPI) memory. The data is packed into the HPI memory start-
ing from address OTXDSP_SDK_IOCTL_CODE_ADDR as specified in Figure 7.
Only one I/O-control packet is present at the HPI memory at the time. Other pending
packets are queued by the Host driver.

Figure 7. Host to DSP Data Packing in the HPI memory.

Once the host driver has copied a new I/O-control packet into the DSP HPI memory,
the Host driver will interrupt the DSP and the DSP program execution will resume at
the OtxDspServiceIoControl() call-back function. The OtxDspServiceIoControl()
call-back function can be re-implemented by the user to perform the application spe-
cific operations (Example 10).

 1 1 1 1 1 1
 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-------------------------------+
| IO Code | OTXDSP_SDK_IOCTL_CODE_ADDR
+-------------------------------+
| Handle | OTXDSP_SDK_IOCTL_HANDLE_ADDR
+-------------------------------+
| Task Ref | OTXDSP_SDK_IOCTL_TASKREF_ADDR
+-------------------------------+
| Data Length (n) | OTXDSP_SDK_IOCTL_DATA_LEN_ADDR
+-------------------------------+
| Data Word 0 | OTXDSP_SDK_IOCTL_DATA_ADDR
+-------------------------------+
| Data Word 1 |
+-------------------------------+
: :
+-------------------------------+
| Data Word (n-1) |
+-------------------------------+

Address
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

21(31)
Programmer's Guide
OTX DSP Control Architecture
Example 10. OtxDspServiceIoControl() call-back function.

8.2.3 DSP to Host Communication

The DSP to host communication is handled through asynchronous driver events. The
DSP application can send events and associated data to the Host by calling the OtxD-
spSetHostEvent() function. The prototype of the OtxDspSetHostEvent() function of is
shown in Example 11.

Example 11. OtxDspSetHostEvent() DSP API function.

The OtxDspSetHostEvent() signals an event towards the Host and copied the data to
be sent into a circular Event buffer in the HPI memory, as specified in Figure 8.

void OtxDspServiceIoControl(
/*---*\
 Call-back routine called by the ISR when the host has issued
 a command to the HPI and requests our attention.

 TO BE RE-IMPLEMENTED BY THE USER.
--/
 void
)
{
 /* Add your code here */
}

short OtxDspSetHostEvent(
 unsigned short nEvent, /* Event to be send to the host */
 unsigned short hHandle, /* Handle to the user logical
 .. device sending the event */
 unsigned short nTaskRef, /* Associated Task Reference */
 unsigned short *pData, /* Pointer to the data to be sent to
 .. the host */
 unsigned short nDataLen /* Length of the data to be sent */
);
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

22(31)
Programmer's Guide
OTX DSP Control Architecture
Figure 8. DSP to Host Event and Data Buffer in the HPI memory.

8.2.4 Data Access

As was discussed in Chapter 7: "OTX DSP Data Architecture", the incoming and out-
going data is stored in circular Auto Buffers which are mapped into the DSP memory.
The DSP generates an interrupt when the buffers are half-full and full (Receive buffer)
or half-empty and empty (transmit buffer). These interrupts will in-turn call user
definable call-back functions OtxDspServiceRxSerialPort() and OtxDspServiceTxSe-
rialPort(). The application developer can use these call-back functions to copy the
data between the auto buffers and user buffers, or if the performance allows, even pro-
cess the data directly in these auto buffers. The call-back function for Serial Port
Receive Interrupts and for Serial Port Transmit Interrupts are shown in Example 12
and in Example 13.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-------------------------------+
| Processing Addr | OTXDSP_SDK_EVENT_BUF_
+-------------------------------+ PROCESSING_ADDR
| Event Code | <-+ OTXDSP_SDK_EVENT_BUF_ADDR
+-------------------------------+ | (start of buffer)
| Handle | |
+-------------------------------+ |
| TaskRef | |
+-------------------------------+ |
| Data Length (n=0) | |
+-------------------------------+ |
| Event Code | |
+-------------------------------+ |
| Handle | |
+-------------------------------+ |
| TaskRef | |
+-------------------------------+ |
| Data Length (n=2) | |
+-------------------------------+ |
| Data Word 0 | |
+-------------------------------+ |
| Data Word 1 | |
+-------------------------------+ |
| OTXDSP_SDK_EVENT_NO_COMMAND | |
+-------------------------------+ |
: : |
+-------------------------------+ |
| | >-+ End of Event buffer
+-------------------------------+
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

23(31)
Programmer's Guide
SDK API
Example 12. OtxDspServiceRxSerialPort() call-back function.

Example 13. OtxDspServiceTxSerialPort() call-back function.

9. SDK API

9.1 Api Functions

The DSP SDK API provides an implementation of the functions needed to communi-
cate with the Host Driver. In addition, the SDK provides the implementation of certain
useful utility functions, such as A-law and U-law companding and expanding. The
API functions are listed in .

.

TABLE 6. DSP SDK API functions available to the application developer.

Function Name Function Description

OtxDspInitProcessor() Sets up the processor to the desired operating mode

OtxDspInitInterrupts() Initialize and unmask specified interrupts

OtxDspInitHostPortInterface() Initialize the Host Port Interface

void OtxDspServiceRxSerialPort(
/*---*\
 Call-back routine called when we have receive interrupt from the
 Buffered Serial Port indicating the receive buffer is either
 full or half-full.

 TO BE RE-IMPLEMENTED BY THE USER.
---/
 void
)
{
 /* Add your code here */
}

void OtxDspServiceTxSerialPort(
/*---*\
 Call-back routine called when we have transmit interrupt from the
 Buffered Serial Port indicating the transmit buffer is either
 empty or half-empty.

 TO BE RE-IMPLEMENTED BY THE USER.
---/
 void
)
{
 /* Add your code here */
}

Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

24(31)
Programmer's Guide
SDK API
9.2 Call-back functions

The DSP SDK API defines certain call-back functions that need to implemented by
the application developer. The call-back functions are called from the DSP Interrupt
Service routine and are listed in Table 7. The demo application provide good example
implementations for these call-back functions.

OtxDspInitBufferedSerialPorts() Initialize the Buffered Serial Ports (BSP)

OtxDspSetHostEvent() Generates a driver event for the host and copies the
associated data to the Host through the HPI buffer.

OtxDspCommandCompleteRc() Generates a Command Complete driver event for
the host and passes the return code from a IO Con-
trol call back to the host.

OtxDspCommandComplete() Generates a Command Complete driver event for
the host.

OtxDspAlawCompress() Takes in a 14 bit 2-s complement value and returns
a A-law compressed value ready to transmission
(8-bits)

OtxDspULawCompress() Takes in a 14 bit 2-s complement value and returns
a U-law compressed value ready to transmission
(8-bits)

OtxDspLawExpand() Expands a U-law or A-law companded 8-bit sam-
ple and returns a 14-bit 2's complement value (in
the 14 least significant bits of a 16-bit word)

TABLE 7. Call-back functions to be re-implemented by the application developer.

Function Name Function Description

OtxDspServiceIoControl() Call-back routine called by the Interrupt Service
Routine when the host has issued a command to
the HPI and requests our attention.

OtxDspServiceRxSerialPort() Call-back routine call when we have receive inter-
rupt from the Buffered Serial Port indicating the
receive buffer is either full or half-full.

OtxDspServiceTxSerialPort() Call-back routine call when we have transmit inter-
rupt from the Buffered Serial Port indicating the
transmit buffer is either empty or half-empty.

TABLE 6. DSP SDK API functions available to the application developer.

Function Name Function Description
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

25(31)
Programmer's Guide
Demo Applications
10. Demo Applications

The C54x DSP SDK is provided with a full source code for two working demo appli-
cations (DspDemo1 and DspDemo2). The source code is provided for the DSP appli-
cation programs (Dsp\DspDemo1\ and Dsp\DspDemo2\) as well as the source code
for the corresponding Host applications (Demos\DslSdk\Pci\DspDemo1\ and
Demos\DspSdk\Pci\DspDemo2\).

10.1 Getting Started

It is recommended that you will use an incremental approach to your DSP application
development; i.e., start from the Demo applications and make small changed at a time
and always verify that the changes work. The steps to get started in DSP application
development are:

1. Verify that you can compile and link the demo applications using the TI C com-
piler.

2. Verify that you can use the corresponding Host application to load the DSP
demo application and that the DSPs start running (the DSPs are running when
the heart-beat LEDs are blinking).

3. Verify that the Host Demo application operates with the DSP demo application
as documented. Use the Demo applications simple key-stroke interface to ver-
ify the operation.

4. Verify that you can debug (set breakpoints, step) the demo applications using
the TI Code Composer debugger.

5. Begin experimenting by making small changes to the demo applications and
always verifying that your changes work.

10.2 Included Files

10.2.1 DSP SDK Files

The C54x DSP SDK contains the files listed in Table 8.

TABLE 8. DSP SDK Common Files.

File Name File Description

DspIoctl.h Host <-> DSP Interface Specification header file.

OtxDef.h Macro, Constant, and Type Definitions for the DSP
SDK
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

26(31)
Programmer's Guide
Demo Applications
10.2.2 DSP Demo Application Files

The files listed in Table 8 implement the DSP SDK. These files should not be edited
by the application developer. In addition to the standard files, the SDK also includes
Demo application files listed in Table 9 and Table 10.

10.2.3 Host Demo Application Files

The SDK also includes two demo host applications to be used with the DSP demo
applications. The DSP Host Applications can be used with any OTX PCI boards that
contain TI TMS320C54x DSP resources. The host application files included are listed
in Table 11.

OtxApi.h Macro, Constant, and Type Definitions for the DSP
SDK

OtxApi.c API function implementations.

OtxVecs.asm Interrupt Vectors (Assembly)

OtxLaws.asm Implementation A-Law, u-law expanding and com-
panding routines in Assembly.

TABLE 9. Files specific for Demo Application 1

File Name File Description

DspDemo1.c Demo 1. Skeleton for DSP applications. Only imple-
ments blinking of the heart-beat LED and a simple
command interface for controlling the blinking.

Demo1Io.h IOCTL Codes used by DspDemo1

build.bat Batch file for building the demo application

TABLE 10. Files specific for Demo Application 2

File Name File Description

DspDemo2.c Demo 2. Skeleton for DSP applications. Interfaces with
system highways implementing an adjustable gain con-
trol.

Demo2Io.h IOCTL Codes used by DspDemo2

build.bat Batch file for building the demo application

TABLE 8. DSP SDK Common Files.

File Name File Description
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

27(31)
Programmer's Guide
Demo Applications
10.3 Compiling and Linking

10.3.1 DSP Demo Applications

To compile and link the demo application, you can use the build.bat batch file pro-
vided with the SDK. If you wish invoke the C Compiler manually, build.bat contains
the commands for compiling and linking of the files.

The linking process is controlled with a linker command file. The SDK provides an
example linker command files for both demo applications (DspDemo1.cmd and
DspDemo2.cmd).

For more information on compiling and linking, please refer to the TMS320C54x
Optimizing C Complier User Guide.

10.3.2 Host Demo Applications

The source directory of each host demo applications contain subdirectories for each
supported platform, e.g. Win32 for Windows. A Microsoft Developer Studio 6.0
Project File (*.dsp) or a Makefile is located in each platform specific subdirectory. To
compile the demo applications with Visual C++, insert the project file into a new or
existing Workspace and add a path the OtxDrv.Lib (\Lib) and the DRV SDK header
files (\Inc) to the project settings in the settings for this project.

10.4 Demo Program Flow

The DSP demo application follow the program flow shown in Figure 9.

TABLE 11. Files for Host Demo Applications

File Name File Description

DspDemo1.c Host demo application to be used with the DSP demo
application DspDemo1.out

DspDemo2.c Host demo application to be used with the DSP demo
application DspDemo2.out

DspDemo1.dsp Visual C++ Project file for making DspDemo1.exe

DspDemo2.dsp Visual C++ Project file for making DspDemo2.exe
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

28(31)
Programmer's Guide
Demo Applications
Figure 9. Program flow for SDK Demo Applications.

Configure the Processor: InitProcessor()

Initialize Serial Ports: InitBufferedSerialPorts()

Initialize Host Port Interface: InitHostPortInterface()

Generate Outgoing Data: GenerateTxSamples()

Initialize Interrupts: InitInterrupts()

Blink the heartbeat LED: Blink()

Forever

Process Incoming Data: ProcessRxSamples()

main()

HPI Interrupt Process Host Command:
ServiceIoControl()

Host Event

RX Interrupt Copy Received Data
ServiceRxSerialPort()

TX Interrupt Fill Data to be transmitted
ServiceTxSerialPort()
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

29(31)
Programmer's Guide
Debugging
11. Debugging

Once the user application has been compiled and linked, it can be downloaded to the
DSPs on OTX boards and executed or debugged with the TI Code Composer Debug-
ger. For more information on how to use the Code Composer Debugger, please refer to
the Code Composer User Guide.

To connect the Code Composer debugger to the OTX PCI Adapter boards, you need to
use the Hermod-JTAG Code Composer Debug Probe, Odin product number HMA-
1057-1. Connect Hermod-JTAG to the BJ3 connector on the OTX PCI adapter. The
Code Composer emulator pod can then be connected to Hermod-JTAG port labeled
“emulator”.
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

30(31)
Programmer's Guide
Debugging
Doc. No. 1412-1-SAA-1007-1 Rev. 1.1 December 23, 2008
Copyright (C) Odin TeleSystems Inc., 1999-2008

Doc. No. 1412-1-SAA-1007-1
For more information on this product, please contact:

Odin TeleSystems Inc.
800 East Campbell Road, Suite 334

Richardson, Texas 75081-1873
U. S. A.

Tel: +1-972-664-0100
Fax: +1-972-664-0855

Email: Info@OdinTS.com
URL: http://www.OdinTS.com/

Copyright (C) Odin TeleSystems Inc., 1999-2008

	1. Table of Content
	2. Introduction
	3. Distribution
	4. Needed DSP Products, Tools, and Documentation
	5. C54x DSP Overview
	5.1 Memory Organization
	5.2 Host Port Interface
	5.3 Serial Ports
	5.4 Program Loading

	6. Introduction to DSP Telecom Applications
	6.1 Data Receiver
	6.2 Data Sender
	6.3 Data Converter

	7. OTX DSP Data Architecture
	7.1 Data Formats

	8. OTX DSP Control Architecture
	8.1 OTX Host Driver API
	8.1.1 DSP Initialization
	8.1.2 Host to DSP Communication
	8.1.2.1 I/O - Control Codes

	8.1.3 DSP to Host Communication

	8.2 DSP SDK API
	8.2.1 DSP Initialization
	8.2.2 Host to DSP Communication
	8.2.3 DSP to Host Communication
	8.2.4 Data Access

	9. SDK API
	9.1 Api Functions
	9.2 Call-back functions

	10. Demo Applications
	10.1 Getting Started
	10.2 Included Files
	10.2.1 DSP SDK Files
	10.2.2 DSP Demo Application Files
	10.2.3 Host Demo Application Files

	10.3 Compiling and Linking
	10.3.1 DSP Demo Applications
	10.3.2 Host Demo Applications

	10.4 Demo Program Flow

	11. Debugging

