
Odin TeleSystems Inc.
Programmer's Guide
for

OTX Hardware API

Doc. No. 1412-1-SAA-1006-1

Rev. 1.1

October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

Copyright

Copyright (C) Odin TeleSystems Inc., 1999-2006. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior written consent of Odin TeleSystems Inc., 800 East Campbell
Road, Suite 334, Richardson, Texas, 75081-1873, U. S. A.

Trademarks

Odin TeleSystems, the Odin Logo, OTX, Thor-2-PCI-Plus, and Vidar-55x4-ASM are trademarks of Odin Tele-
Systems Inc., which may be registered in some jurisdictions. Other trademarks are the property of their respec-
tive companies.

Changes

The material in this document is for information only and is subject to change without notice. While reasonable
efforts have been made in the preparation of this document to assure its accuracy, Odin TeleSystems Inc.,
assumes no liability resulting from errors or omissions in this document, or from the use of the information con-
tained herein.

Odin TeleSystems Inc. reserves the right to make changes in the product design without reservation and notifica-
tion to its users.

Warranties

THE SOFTWARE AND ITS DOCUMENTATION ARE PROVIDED “AS IS” AND WITHOUT WARRANTY
OF ANY KIND. ODIN TELESYSTEMS EXPRESSLY DISCLAIMS ALL THE WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE. ODIN TELESYSTEMS DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET ANY REQUIREMENTS, OR
THAT THE OPERATIONS OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR
THAT DEFECTS WILL BE CORRECTED. FURTHERMORE, ODIN TELESYSTEMS DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY,
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVISE GIVEN BY ODIN TELESYS-
TEMS OR ODIN TELESYSTEMS’ AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY.

UNDER NO CIRCUMSTANCE SHALL ODIN TELESYSTEMS INC., ITS OFFICERS, EMPLOYEES, OR
AGENTS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING DAMAGES FOR LOSS OF BUSINESS, PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE AND ITS DOC-
UMENTATION, EVEN IF ODIN TELESYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. IN NO EVENT WILL ODIN TELESYSTEMS’ LIABILITY FOR ANY REASON EXCEED THE
ACTUAL PRICE PAID FOR THE SOFTWARE AND ITS DOCUMENTATION. SOME JURISDICTIONS
DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL AND CONSE-
QUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.
This document is published by:

Odin TeleSystems Inc. Printed in U. S. A.

Odin TeleSystems Inc.
800 East Campbell Road, Suite 334
Richardson, Texas 75081-1873
U. S. A.

http://www.OdinTS.com

3(29)
Programmer's Guide
Table of Content
1. Table of Content
1. Table of Content...3

2. Introduction..4

3. API Coding Convention...5

4. Driver Objects and Handles ...6
4.1 Handles.. 6
4.2 Events and Event Queues.. 7

4.2.1 Driver Events .. 7
4.2.2 Notification Events ... 8
4.2.3 Event Queues .. 8

4.3 Physical Devices ... 9
4.4 Logical Devices... 12
4.5 Pipes .. 13

5. OTX Driver Model ..15

6. Blocking vs. Non-Blocking Function Calls ...18

7. Event Driven vs. Polling Operation...20

8. Generic Driver Object Functions ...21
8.1 Enabling .. 21
8.2 Disabling ... 22
8.3 Checking State .. 22
8.4 Resetting.. 22
8.5 Closing .. 23

9. Error Handling ...23

10. Initialization and Cleanup..25

11. Debugging and Trouble Shooting ..26

12. Recommended Program Flow ...27
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

4(29)
Programmer's Guide

Introduction
2. Introduction

The OTX (Odin Telecom FrameworX) Hardware Driver provides the software needed
by the PC Host processor to communicate with the OTX Telecom Adapters. The OTX
Driver Software implements the hardware dependent access scheme to the resources
on the various OTX Adapters. The same hardware driver supports all of the OTX PCI,
CompactPCI, PCMCIA and CardBus Adapters.

More specifically, the OTX Hardware Driver performs the following functions:

• Abstracts the Hardware Interface into a higher level Application Programming
Interface (API).

• Passes commands and data between software applications and OTX hardware.

• Handles interrupts generated by the adapters and dispatches the notifications to the
appropriate software modules and applications.

• Manages the hardware resources allowing multiple applications and/or multiple
processes and threads to use multiple adapter boards with minimum blocking.

The OTX hardware Application Programming Interface (API) is a C-language func-
tion call interface. The API allows software applications to be written without intimate
knowledge of the hardware operation and of the low-level hardware interface. The dif-
ferent interfaces of the OTX hardware driver are illustrated in Figure 1.

Figure 1. OTX Hardware Driver Interfaces.

Application
Program

I/O Writes/Reads
Memory Writes/Reads

C Function Calls:

Interrupts

OTX Hardware Driver

 foo(dataIn, &dataOut); Events(&data)Application
Programming
Interface

PC Extension Bus

OTX
Hardware

Application
Program
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

5(29)
Programmer's Guide
API Coding Convention
3. API Coding Convention

All functions, data types, and macros within the OTX API follow a naming conven-
tion. All names have a prefix ‘OTX’ (for Odin Telecom frameworX). Example 1 illus-
trates a typical function definition in the OTX API and highlights the use naming
conventions.

Example 1. OTX API Coding Conventions.

As shown in Example 1, all types have been redefined to facilitate portability. For
example, a 32-bit integer type is called OTX_INT32 in the API. The built in types used
in the driver are listed in Example 2.

Example 2. OTX API Basic Data types.

The function arguments in the OTX API and variables in the driver demo programs
are named using the hungarian notation. The used notation is explained in detail in
Table 1,

TABLE 1. Hungarian Notation used in OTX API and Demo Programs.

prefix Meaning
b Boolean.
c Char

OTX_RESULT OtxDrvWaitForMultipleEvents(
 IN OTX_INT32 coEventHandles, // Event handle count
 IN OTX_EVENT hsqEvents[], // Array of event handles
 IN OTX_UINT32 nWaitMs, // Max time to wait in milliseconds
 IN OTX_BOOL bWaitAll, // Specifies the wait type
 OUT OTX_INT32 *pnEventFired // Index to event in array that fired
);

Every API function returns OTX_RESULT Function name has a ‘Otx’ prefix

IN/OUT shows whether Redefined types to
facilitate portability

Hungarian notation for
arguments input or output to the function

// OTX API Basic Data Types
OTX_INT8 : Signed integer, 8 bits
OTX_INT16 : Signed integer, 16 bits
OTX_INT32 : Signed integer, 32 bits
OTX_INT64 : Signed integer, 64 bits
OTX_UINT8 : Unsigned integer, 8 bits
OTX_UINT16 : Unsigned integer, 16 bits
OTX_UINT32 : Unsigned integer, 32 bits
OTX_UINT64 : Unsigned integer, 64 bits
OTX_CHAR : Character type (8 bits)
OTX_BOOL : Boolean
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

6(29)
Programmer's Guide
Driver Objects and Handles
4. Driver Objects and Handles

Now when we have familiarized ourselves with the used coding conventions, it is time
to explore some of the fundamentals in the OTX driver and the OTX hardware API.
The concepts essential for understanding the OTX Hardware API are the notions of
“Driver Objects” and “Handles.” All the hardware and driver resources are repre-
sented to the user (user meaning the application program) as various objects. All oper-
ations are always targeted to a specific driver object and all the events are initiated
from an object. The driver objects are identified and accessed using handles of type
OTX_HANDLE.

The OTX Hardware API supports the following types of driver objects:

• Physical Devices

• Logical Devices

• Event Queues

• Pipes

4.1 Handles

All the objects are addressed and accessed from an application using handles. The
data type of a object handle is OTX_HANDLE, which is a 32-bit unsigned integer
(independent of the platform). The OTX_HANDLE data type and other globally used
types are defined in the “OtxType.h” header file. Example 3 illustrates how to declare
handles with an application program code.

cb Same as ‘n’, but specifically used as a count of octets/bytes (e.g. size of
array).

co Same as ‘n’, but used as a count of arbitrarily sized objects.
e Enumerated type, only certain integer values allowed.
g_ global variable
gs_ static global variable
h Handle to a driver object
i Same as ‘n’ but specifically used as index.
n Number, any type of integer number, size and sign not significant.
p Pointer ‘*’
sq Sequence of objects, a generic collection; e.g. arrays.
sz ‘\0’ terminated c-type string (char *)

TABLE 1. Hungarian Notation used in OTX API and Demo Programs.

prefix Meaning
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

7(29)
Programmer's Guide
Driver Objects and Handles
Example 3. Declaration of Handles.

Handles to driver objects are supplied by the OTX driver. A handle of type
OTX_HANDLE can be used to identify any type of driver object: A physical device, a
logical device, a pipe, or an event queue. A valid handle is a positive 32-bit value.
Negative values are not valid, especially -1 denotes an invalid handle
(OTX_INVALID_HANDLE_VALUE). The value of a handle also indicates the type of
devices it points to, as shown in Table 2.

4.2 Events and Event Queues

Events are a method for the driver to provide notifications to an application. Events
can occur spontaneously and asynchronously (e.g. link down) or as a result of a user
incurred action. The purpose of events is to provide a means to the driver to inform the
application of a driver status change, of a completed driver operation, or to request an
action from the application. The OTX API supports two types of events:

• Driver Events

• Notification Events

4.2.1 Driver Events

Events initiated by driver objects are called driver events. Every driver event has a
data structure of type OtxEventDataS associated with it. The OtxEventDataS data
structure provides information on when the event occurred, which driver object initi-
ated it, and what was the reason for the event. The declaration of OtxEventDataS is
shown in Example 4.

TABLE 2. OTX_HANDLE bit fields explained.

Bit # Value Meaning
31 0 Must be 0 for a valid handle

30-28

001 Handle to a Physical Device
010 Handle to a Logical Device
011 Handle to an Event Queue
100 Handle to a Pipe

27-24 0/1 Reserved for Future use
23-0 any Sequence number of the handle of its type

#include “OtxType.h”

OTX_HANDLE hMyHandle; // Declaration of a single handle
OTX_HANDLE hMyHandleArr[4]; // Declaration of a array of handles
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

8(29)
Programmer's Guide
Driver Objects and Handles
Example 4. Declaration of event structure for driver events.

The driver events are generated internally in the driver and can be retrieved by the
application by calling the OtxDrvGetEventData() function.

4.2.2 Notification Events

The notification events can be used by an application to wait efficiently for driver
events. Notification events behave like WIN32 Events, as a matter of fact on WIN32
platforms the OTX notification events are WIN32 events. On other platforms the noti-
fication events are implemented by the driver to simulate the WIN32 Event behavior.

A notification event can be created with the OtxDrvCreateEvent() function as demon-
strated in Example 5.

Example 5. Creation of a notification event.

The use of notification events is covered in more detail in Chapter 7: "Event Driven
vs. Polling Operation".

4.2.3 Event Queues

An Event Queue a driver object that is used to serialize the asynchronous driver
events. The OTX driver supports multiple events queues: A separate event queue can
be associated with every driver device, or multiple driver devices can share an event
queue. An event queue can be created with the OtxCreateEventQueue() function:

struct OtxEventDataS {
 OTX_DATETIME m_nTimeStamp; // Absolute time event was recorded
 OTX_UINT32 m_eDeviceType; // Type of device generating the event
 OTX_UINT32 m_nSourceId; // ID of the device generating event
 OTX_HANDLE m_hDevice; // Handle to the Device generating event
 OTX_NOTIFY_CAUSE m_nCode; // Device specific cause code indicating
 // ..what happened.
 OTX_TASK_REF m_nRequestId; // If the message is for a previous
 // .. user request. User assigned ID
 OTX_UINT32 m_nParam; // Optional parameter
};

OTX_EVENT hMyNotificationEvent;
OTX_RESULT nRresult

// Creation of a notification event
nResult = OtxDrvCreateEvent(&hMyNotificationEvent);
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

9(29)
Programmer's Guide
Driver Objects and Handles
Example 6. Creation of an event queue.

When an event queue is created, the user can specify the maximum size of the queue
in number of events. The user can also register a notification event that will be sig-
nalled by the driver every time driver events are inserted to the event queue.

The driver events can be retrieved from the event queue with function
OtxDrvGetEventData(), as demonstrated in Example 7.

Example 7. Retrieval of driver events from an event queue.

As was shown in Example 4, the event data contains a driver object specific cause
code for the driver event. The cause code can be translated into a string describing the
cause with the OxtDrvEventCode2String() function.

4.3 Physical Devices

OTX API Physical Devices represent real (physical) devices on the OTX Adapters.
The number of physical devices is set and cannot change dynamically. This is the
main difference between physical devices and logical devices: While every OTX
adapter has a predetermined number of physical devices available for use, new logical
devices can be requested and created by the user when needed.

A physical device can be an entire adapter board (a Board Device) or an integrated
circuit (a Chip Device) populated on a board. A board device corresponds to one
OTX Network Interface Card (NIC) or to an OTX ASM Daughter Board Module. The

OTX_RESULT nResult;
OTX_EVENT hMyNotificationEvent;
OTX_HANDLE hMyEventQueue;

// Create Event Queue (max size 128 Events). Register event
// hMyNotificationEvent that will be set when driver events
// available.
// Handle to the new event queue returned in hMyEventQueue
nResult = OtxDrvCreateEventQueue(128, hMyNotificationEvent, &hMy-
EventQueue);

OtxEventDataS eventData;
OTX_HANDLE hMyEventQueue;
OTX_RESULT nResult;

// Check for driver events from previously created event queue
nResult = OtxDrvGetEventData(hMyEventQueue, &eventData);

if (nResult == OTX_S_OK) {
 // We have an event
}

Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

10(29)
Programmer's Guide
Driver Objects and Handles
board device is the place-holder and controller of other physical devices on the board.
A chip device represents a physical integrated circuit on the board performing one or
several functions. Typical chip devices include:

• Line Interface (LI) Devices: A hardware device that interfaces with the external
network and converts/maps the external data interface to the internal serial data
highways. A LI Device typically includes a transceiver chip and analog front end
circuitry. Examples of LI devices include:

• OTX_DEVICE_LI_POTS: Analog Phone Line Interface Device.

• OTX_DEVICE_LI_T1E1: T1/E1 Line Interface Device.
• Processor Devices: A processor device is general purpose micro processor or Dig-

ital Signal Processor (DSP) implementing certain functionality (logical devices)
under software control:

• OTX_DEVICE_DSP: Digital Signal Process Device.

• OTX_DEVICE_PROCESSOR: General Purpose Micro Processor Device.
• Data Transfer Device: A device that transfers data from a serial format (PCM

highways to a parallel format (e.g. the 32-bit PCI bus)

• OTX_DEVICE_BURST: Tranfers data to and from a PCM highway to the
user mode in the host PC via 32-bit DMA burst transfers.

• Switch Device: A device connecting and disconnecting data-paths on the board:

• OTX_DEVICE_TSS: Time space switch cross-connecting PCM highways.

Figure 2 illustrates the physical devices available on a Thor-2-PCI-Plus Adapter
equipped with a Vidar-55x4-ASM daughter board.
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

11(29)
Programmer's Guide
Driver Objects and Handles
Figure 2. Physical Devices Available on a Thor-2-PCI-Plus & Vidar-55x4-
ASM combination.

Each physical devices can be identified with 3 parameters:

• Device Type: Each Physical Device is of a certain device type. The device types
supported by the driver is enumerated in OtxPhysicalDeviceTypeE, which is
defined in the OtxDev.h header file. For example, Thor-2-PCI-Plus contains two
Line Interface physical devices of type OTX_DEVICE_LI_T1E1.

• Parent Device: The parent device represents a containment relationship. For
example, all chip devices always have a board device as a parent. In the case of
Thor-2-PCI-Plus, the OTX_DEVICE_LI_T1E1 have a parent device of
OTX_DEVICE_THOR_2_PCI_PLUS. The board devices representing the net-
work interface cards are the only devices that do not have parent physical devices.

• Sequence Number: Each physical device has a sequence number. The sequence
number is a zero-counted number of devices of the same type within one parent
device. For example, the Thor-2-PCI-Plus contains two OTX_DEVICE_LI_T1E1
physical devices with sequence numbers 0 and 1. If we had another Thor-2-PCI-
Plus board installed, the LIs on that board would have the same sequence numbers.
However, the LI’s could be differentiated by the fact that they have different parent
devices.

An application can open a physical device for use with the OtxDrvOpenPhysicalDe-
vice() function call, as illustrated in Example 8.

T1/E1

T1/E1

DSP DSP

DSP DSP

TSS

Thor-2-PCI
Vidar-5x4-ASM

Thor-2-PCI Board
Physical Device

2 x T1/E1 Line Interface
Physical Devices

Time-Space Switch
Physical Device

4 x Digital Signal Processor
Physical Devices

Vidar-55x4-ASM Daughter Board
Physical Device
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

12(29)
Programmer's Guide
Driver Objects and Handles
Example 8. Opening of physical devices.

The first three arguments to the OtxDrvOpenPhysicalDevice() function (the parent
device, the physical device type, and the sequence number) identify the device to be
opened. The next parameter allows the user to provide a handle to an event queue that
will be used for driver events generated by this device. The source Id parameter allows
the user to provide an identification number that will be assigned to each event gener-
ated by this device. The last parameter to the function is an OUT parameter and
returns a handle to the opened physical device.

4.4 Logical Devices

A logical device is a driver object representing a logical entity performing certain
well defined functions. An OTX adapter can implement logical devices with hard-
ware, firmware, or software. A logical device is always implemented by a physical
device.

The logical devices are differentiated from the physical devices by the fact that the
number of logical devices is not pre-determined. More logical devices can be
requested by the user and allocated by the system when needed. Examples of logical
devices include HDLC Receiver and Sender, Tone Detector, Tone Generator, etc.

The following logical devices classes are supported by the OTX Driver:

• Logical Tone Devices: Logical devices for tone generation and reception (Defined
in “OtxTone.h”).

• Logical Data Devices: Devices for sending, receiving, and manipulation of
raw serial data (Defined in “OtxData.h”).

• Logical HDLC Devices: Logical devices implementing HDLC Sender and
Receiver Devices (Defined in “OtxHdlc.h”).

#define THOR_SOURCE_ID 5
#define LI_SOURCE_ID 6
OTX_RESULT nResult;
OTX_HANDLE hMyThor;
OTX_HANDLE hMyLi;
OTX_HANDLE hMyEventQueue;

// Open a Thor-2-PCI-Plus Board device #0
// Since this is a board device it has no parent (0).
// Returns handle to the board ‘hMyThor’
nResult = OtxDrvOpenPhysicalDevice(0, OTX_DEVICE_THOR_2_PCI_PLUS,
0, hMyEventQueue, THOR_SOURCE_ID, &hMyThor);

// Open a T1/E1 Line Interface Device #1 within the
// Thor-2-PCI-Plus board. Use the same event queue.
// Returns handle to the Line Interface device.
nResult = OtxDrvOpenPhysicalDevice(hMyThor, OTX_DEVICE_LI_T1E1,
1, hMyEventQueue, LI_SOURCE_ID, &hMyLi);
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

13(29)
Programmer's Guide
Driver Objects and Handles
• Logical CAS Devices: Devices implementing Channel Associated Signalling for
(CAS) functions (Defined in “OtxCas1.h”).

• Logical Modem Devices: Devices implementing Modem emulation.

• Logical Fax Devices: Devices implementing Fax emulation.

• Logical Voice Devices: Devices implementing Voice Codecs, echo cancellation,
silence suppression, etc.

New logical devices can be instantiated with the OtxDrvCreateLogicalDevice() func-
tion. Example 9 illustrates a creation of a logical DTMF detector device. The logical
device in question is implemented with DSP software, thus the host device for the log-
ical device is a physical DSP chip device. As with physical devices, the logical
devices can be associated with event queues and provided with source identifiers to be
used with generated events.

Example 9. Creation of a logical device.

As was mentioned above, logical devices are dynamic. For example, the same adapter
board can be made to support a completely new set of logical devices by simply load-
ing new programs into the on-board Digital Signal Processors (DSPs).

4.5 Pipes

A Pipe device is a logical entity representing a connection between two physical
devices. A pipe is used to represent serial Time-Division Multiplexed (TDM) data
transfer between two connected devices. The connected devices can reside on a single
board or on separate boards. This location of the devices and the needed cross-con-
nects are all transparent to the user. Once the user has connected any two physical
devices with a pipe, the physical cross-connects (locally on one board, or through the
H.100/H.110 bus) are created automatically.

A pipe can be created for a any data rate between 8 kbit/s and 8.192Mbit/s with 8 kbit/
s increments. A pipe can correspond to a single time-slot on a physical highway or it
can comprise of a superchannel of multiple time slots. The requested capacity is spec-
ified when the pipe is created. Pipes can be created with the driver function

#define DTMF_SOURCE_ID 10
OTX_HANDLE hMyDsp;
OTX_HANDLE hMyDtmfDetector
OTX_HANDLE hMyEventQueue;

// Instantiate a new DTMF detector logical device. The device is
// implemented by software in a DSP physical device. Returns a
// handle ‘hMyDtmfDetector’ to the newly created logical device
OtxDrvCreateLogicalDevice(hMyDsp, OTX_LDEVICE_TONE_DTMF_DETECTOR,
hMyEventQueue, DTMF_SOURCE_ID, &hMyDtmfDetector);
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

14(29)
Programmer's Guide
Driver Objects and Handles
OtxDrvCreatePipe(), which takes the requested capacity as a parameter and returns a
handle to the newly created pipe. The creation of a pipe is illustrated in Example 10.

Example 10. Creation of a Pipe.

After a pipe has been created, it exists as a purely logical entity with a specified capac-
ity. The next task of an application is to connect both ends of the pipe to two physical
devices. The connection is performed with the OtxDrvConnectPipe() function. At this
time the pipe can be mapped to a physical highway and on to specific time-slots. The
mapping can be done by providing a channel mask as a parameter to the OtxDrvCon-
nectPipe() function. A channel mask is a array of 32 Bytes, where each byte repre-
sents one of the 32 time-slots in a 2.048 Mbit/s highway. Within each byte, one of the
eight bits represent a bit in a 64kbit/s time-slot. Thus, each bit represents a 8 kbit/s
sub-channel. Writing ‘1’ to any bit position within the channel mask will cause the
pipe to be mapped to use that physical channel. Connecting a pipe to a physical device
and mapping a pipe to specific time-slots is illustrated in Example 11.

Example 11. Connecting a Pipe to a Physical Device and mapping of the pipe
to a specific time-slot.

If the user does not care which physical time-slots are used, the user can specify
“don’t care” to the mapping parameters, and the driver will automatically use the most
suitable physical time-slots.

A pipe has a direction; i.e., it has an input and an output. Thus, two Pipes and four
calls to the OtxDrvConnectPipe() function are needed for a full duplex connection
between two devices.

OXT_RESULT nResult;
OTX_HANDLE hMyPipe;

// Creation of a 64 kbits/s Pipe. Returns a Handle to the Pipe
nResult = OtxDrvCreatePipe(64, &hMyPipe);

// Channel mask for enabling time-slot 12
OTX_UINT8 sqTimeSlot12Mask[32] =
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0xff,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

OTX_RESULT nResult;
OTX_INT32 dummy;

// Connect output of a pipe to the T1/E1 Physical Device
// using its Highway #1
// Force connection to use time-slot 12 on that highway
nResult = OtxDrvConnectPipe(hMyPipe, OTX_PIPE_OUTPUT, hLi[0], 1,
sqTimeSlot12Mask, 32);
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

15(29)
Programmer's Guide
OTX Driver Model
5. OTX Driver Model

Now when we have a solid understanding of the various driver objects, it is time to put
all this information together to form a Driver Model for the OTX Hardware driver and
the API. The Physical and Logical Device driver objects contain four interfaces:
Serial Data Stream In, Serial Data Stream Out, Control In, and Events Out. The OTX
Driver device model is shown in Figure 3.

Figure 3. OTX Driver device interface model.

The device control interface is used by the application to manage the device and to
access user data. The control interface is accessed using the handle to the device. The
device uses the event interface to inform the application on driver events. The serial
data interfaces transfer serial data stream in and out from the device. Each device can
have multiple data stream coming and leaving the device.

A pipe device has 3 interfaces: Serial Data In, Serial Data Out, and Control In. A
model for a pipe object is shown in Figure 4.

Figure 4. Pipe Object Interface Model.

A pipe transmits serial data stream from one physical device to another. A pipe is one
directional; i.e. it has an input and an output.

Serial Data Streams In Serial Data Streams Out

Events

Control

Physical or
Logical Device

Pipe
Serial Data Stream In Serial Data Stream Out

Control

OTX_PIPE_INPUT OTX_PIPE_OUTPUT
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

16(29)
Programmer's Guide
OTX Driver Model
An event queue can be modeled as shown in Figure 5.

Figure 5. Event Queue interface model.

An event queue takes in driver events from driver devices and queues them for
retrieval by an application.

By putting the above models together, we can now develop an overall model for the
OTX driver. Figure 6 shows one example of how the OTX driver could be configured.

Driver Events in from Driver Devices

Driver Events out to Application

Control
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

17(29)
Programmer's Guide
OTX Driver Model
Figure 6. Example of a OTX driver configuration.

From Figure 6 we can deduce several important points to remember:

A. A physical board device representing a Network Interface Card (NIC) is always
the root device that contains physical chip devices and possibly other board
devices (representing daughter board modules). The number of physical
devices available is set and cannot be changed. (Please refer to OtxDrvOpen-
PhysicalDevice())

B. An arbitrary number of Logical Devices implementing certain functions can be
instantiated within physical devices. (Please refer to OtxDrvCreateLogicalDe-
vice())

C. Pipes are used to connect physical chip devices. (Please refer to OtxDrvCon-
nectPipe())

D. Pipes are one-directional. Two pipes are needed for a full duplex connection.
(Please refer to OtxDrvCreatePipe())

Physical Chip Device

Logical
Device

PipePipe

Events

E
ve

nt
Q

ue
ue

Logical
Device

Logical
Device

Logical
DevicePipe

Pipe

Physical
Chip Device

Physical
Chip Device

E
ve

nt
Q

ue
ue

Events

Physical Board Device
A

B C

DE FG

H

I

J

OTX Driver
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

18(29)
Programmer's Guide
Blocking vs. Non-Blocking Function Calls
E. External interfaces can be described with pipes that has only one end connected
to chip device and one end is left unconnected representing the fact that the
other end of the link is beyond the scope of the driver. For example, on the
Thor-2-PCI adapter the external T1/E1 links can be represented with pipes
which have one end connected to the OTX_DEVICE_LI_T1E1 devices and one
end has been left unconnected.

F. Physical devices can be connected to multiple pipes.

G. Logical devices can be connected in series and in parallel to form advanced
configurations. Only logical devices within one physical device can be con-
nected together. (Please refer to OtxDrvConnectLogicalDevice())

H. Not all the devices have both input and output for serial data streams. Certain
devices have only input. These devices are called data sink. An example of a
data sink is a OTX_LDEVICE_TONE_DTMF_DETECTOR logical device. Cer-
tain devices have an data output. These devices are called data sources. An
example of an data source is a OTX_LDEVICE_HDLC_SENDER device.

I. The OTX Driver can support multiple event queues (Please refer to OtxDrvCre-
ateEventQueue())

J. Multiple driver devices (both physical and logical) can be associated with the
same event queue.

6. Blocking vs. Non-Blocking Function Calls

Certain OTX API function calls cannot always be completed without waiting for
device operations to complete. The time to wait can vary depending on external fac-
tors, such as a line interface events or timers. These types of functions pose a problem
to the application writer as they can take a significant time to complete. It is often not
acceptable for the application to stop and wait for a function call to the driver to com-
plete. To solve this problem, the OTX driver provides two calling methods for these
types of functions:

• Blocking: The driver function attempts to complete the whole operation before
returning. The calling program will wait for the function return. A time-out value
can be provided to the function to force a return and to prohibit a potential dead-
lock situation.

• Non-Blocking: The driver function returns immediately. If the function was able
to complete operation without waiting, it will return the result of the operation.
Otherwise the function will return OTX_S_PENDING and schedule a task to be
completed when the needed data becomes available. The application can now con-
tinue its operations while the requested task will be completed in the background.
Once the task has been completed, a driver event will be provided to the applica-
tion through the appropriate event queue. The event will contain a reference value
that was provided in the non-blocking function call.
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

19(29)
Programmer's Guide
Blocking vs. Non-Blocking Function Calls
By default, the OTX API function calls are blocking. Functions that provide the non-
blocking calling option contain arguments for task reference and timeout as shown in
Example 12.

Example 12. Prototype of a non-blocking function call.

A blocking function call can be made blocking by providing OTX_TASK_SYNC as the
task reference. An example of a blocking function call with a 5 second time-out and
without a time-out are shown in Example 13.

Example 13. Blocking call examples using a non-blocking function.

A positive (>= 1) task reference value will cause a non-blocking function call and a
creation of a background task. Once the task has completed or if the time-out has
expired, a driver event will be provided to the user. The driver event contains the task
reference value as given to the function. This allows the application to match the
events to the tasks. An example of a non-blocking function call is shown in Example
14.

// Prototype of a driver function with non-blocking calling option
OTX_RESULT OtxXXXFoo(
 IN OTX_HANDLE hObject, // Handle to target driver object
 : // Other parameters
 IN OTX_TASK_REF nTaskRef, // Task Reference
 IN OTX_TIME nWaitMaxMs // Timeout
);

OTX_RESULT nResult;
OTX_HANDLE hMyDev;

nResult = OtxDrvOpenPhysicalDevice(...., &hMyDev);

// Blocking call with 5 second time-out
nResult = OtxDrvEnable(hMyDev, OTX_TASK_SYNC, 5000);

// Blocking call without time-out
nResult= OtxDrvDisable(hMyDev, OTX_TASK_SYNC, OTX_TIME_INFINITY);
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

20(29)
Programmer's Guide
Event Driven vs. Polling Operation
Example 14. An example of a non-blocking function call.

If the user application does not care to keep track of what tasks have been completed,
the application can use a special OTX_TASK_ASYNC task reference, or alternatively
the same positive task reference can be used over and over again.

A pending task can be cancelled with the OtxDrvCancelTask() function, as shown in
Example 15. Also, a task is automatically cancelled at the end of the specified timeout
period. If a task is cancelled due to time-out, a driver event is sent to the application.

Example 15. Cancelling of a task.

7. Event Driven vs. Polling Operation

It is recommended that the application utilizing the OTX driver and OTX API is writ-
ten in event driven fashion. The OTX API provides notification events and wait func-
tions to write efficient applications for multi-tasking environments. The API functions
allow the applications to go to sleep when nothing is happening and wake up when
driver reports events or when a user requests action.

As was mentioned earlier, the function OtxDrvCreateEvent() can be used to create a
notification event to be used to signal the application that driver events are available.
The creation of notification events was demonstrated in Example 5. The created noti-
fication can then be passed on to a event queue to be used to signal the application.
The registration of the notification event with an event queue was shown in Example
6.

#define MY_TASK_REF

// Non-Blocking Function call ...
nResult = OtxToneDtmfDial(hMyDev, “19726640100”, 11, MY_TASK_REF,
5000);

if (nResult == OTX_S_PENDING) {
 // Task created, execution continues immediately
} else {
 // Function call completed, Success or failure
}

// Cancel the task created in Example 14.

nResult = OtxDrvCancelTask(hMyDev, MY_TASK_REF);
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

21(29)
Programmer's Guide
Generic Driver Object Functions
Once the notification event has been registered, the application can call OtxDrvWait-
ForSingleEvent() function to wait efficiently for a notification event. The use of the
OtxDrvWaitForSingleEvent() function is demonstrated in Example 16.

Example 16. Waiting for a notification event to be signalled.

The function OtxDrvWaitForMultipleEvents() can be used to wait for one of many
events to be signalled. The OtxDrvWaitForSingleEvent() and OtxDrvWaitForMulti-
pleEvents() are modeled after similar WIN32 system services. In WIN32 platforms
the functions are implemented utilizing the corresponding WIN32 system services. On
other platforms the driver implements the same functions simulating the WIN32 func-
tionality.

The OTX API also supports the implementation of applications which are polling. The
function OtxDrvPollEvents() can be used to constantly poll for events. The
OtxDrvPollEvents() function can also be used to execute the driver Interrupt Service
Routine (ISR) in case the there is a reason not to use physical interrupts. Polling
applications are not recommended except possibly in the DOS environment.

8. Generic Driver Object Functions

The OTX driver API provides certain functions that can always be applied to any
driver object to which the application owns an handle.

8.1 Enabling

As the name says, the OtxDrvEnable() function enables a driver object. The function
performs the following operations on the different types of drivers objects:

• Physical or logical devices: Makes the device to accept I/O requests and allows it
start generating driver events, if an event queue has been associated with the
device.

OTX_EVENT hMyEvent;
OTX_RESULT nResult;

// Create a new notification event
nResult = OtxDrvCreateEvent(&hMyEvent);

// Go to sleep waiting for the event to be signalled.
// Wait max 5 seconds
nResult = OtxDrvWaitForSingleEvent(hMyEvent, 5000);

if (nResult == OTX_S_SIGNALLED) {
 // Event was signalled
} else if (nResult == OTX_E_TIMEOUT) {
 // Time-out, notification event not received
}

Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

22(29)
Programmer's Guide
Generic Driver Object Functions
• Pipe: Through connects the pipe internally from input to output and begins the
serial data transmission through the pipe.

• Event Queue: Allows an event queue to start accepting driver events and to start
generating notification events to the application, if so configured.

8.2 Disabling

The OtxDrvDisable() function disables a driver object:

• Physical or logical devices: Makes the device to reject all I/O requests. Only cer-
tain control commands can be issued to a disabled object (such as configuration,
reset, and enable commands). A disabled object cannot generate events. However,
events already in the associated event queue will not removed by this command.

• Pipe: Disconnects the pipe internally and terminates the serial data transmission
through the pipe.

• Event Queue: Stops the event queue from accepting driver events and halts gener-
ation of notification events to the application. The events already in the event
queue will remain in the queue until the queue is enabled or reset.

8.3 Checking State

The OtxDrvGetState() returns the state of a driver object. Any driver object can be in
one of the 3 states:

• WORKING

• MANUALLY BLOCKED

• AUTO BLOCKED

Disabling an object with the OtxDrvDisable() function forces the device to MANU-
ALLY BLOCKED state. Enabling of a driver object with function OtxDrvEnable()
attempts to set the device into a WORKING state. However, if the driver object does
not operate correctly, e.g., it generates excessive amounts of driver events, the driver
can automatically block the device and force it to state AUTO BLOCKED.

8.4 Resetting

The OtxDrvReset() function software or hardware resets a driver object depending on
the object. In a normal operation it should not be necessary to reset any driver objects.
A reset is normally performed to resolve an error condition. Certain driver objects
must be disabled before they can be reset.

• Physical Devices: Hardware or software resets the device. Clears all the driver
events generated by the device from the associated event queue.

• Logical Devices: Software resets the device. Clears all the driver events generated
by the device from the associated event queue.
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

23(29)
Programmer's Guide
Error Handling
• Pipe: No operation.

• Event Queue: Empties the event queue from all the events.

8.5 Closing

Closes a driver object and renders the handle invalid. When a parent object is closed,
all the child objects are automatically closed as well.

9. Error Handling

As already shown in the previous examples, all OTX API functions return a result
code of type OTX_RESULT. Two types of result codes exist:

• Generic Result Codes: These result codes are generic to the driver. Any driver
object can use and return them. The generic result codes are defined in “OtxErr.h”.

• Object Specific Result Codes: Object specific result codes are only known and
used by one driver object type. The Object specific result codes are specified in the
appropriate header file for the driver object.

Result codes with positive value indicate success, and codes with negative values indi-
cate an error condition. Some of the generic codes for successful operations are shown
in Example 17 and some generic error codes in Example 18, respectively.

Example 17. Examples of generic result codes for success.

// Everything ok
#define OTX_S_OK (0x00000000L)

// Everything ok, but result is logically false
#define OTX_S_FALSE (0x00000001L)

// An event was signalled
#define OTX_S_SIGNALLED (0x00000002L)

// An wait operation timed out
#define OTX_S_TIMEOUT (0x00000003L)

// The data necessary to complete the operation not available.
#define OTX_S_PENDING (0x00000004L)
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

24(29)
Programmer's Guide
Error Handling
Example 18. Examples of generic error codes.

The OTX API provides handy macros for checking whether a operation was a success
or a failure. The use of these macros is demonstrated in Example 19.

Example 19. Checking of result codes.

The OTX API also provides a function, OtxDrvResultCode2String(), to translate the
result codes into a string containing a textual explanation for the result code. The use
of OtxDrvResultCode2String() is demonstrated in Example 20.

// Catastrophic failure
#define OTX_E_UNEXPECTED (0x8000FFFFL)

// Not implemented
#define OTX_E_NOTIMPL (0x80000001L)

// Ran out of memory
#define OTX_E_OUTOFMEMORY (0x80000002L)

// Ran out of software resources
#define OTX_E_OUT_OF_RESOURCES (0x80000003L)

// One or more arguments are invalid
#define OTX_E_INVALIDARG (0x80000004L)

OTX_HANDLE hMyObject;
OTX_RESULT nResult;

nResult = OtxDrvFoo(hMyObject);

if (OTX_SUCCESS(nResult)) {
 // one of success result codes returned
}

nResult = OtxDrvFooBar(hMyObject);

if (OTX_FAILURE(nResult)) {
 // Failure
}

Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

25(29)
Programmer's Guide
Initialization and Cleanup
Example 20. Converting result codes to strings.

10. Initialization and Cleanup

By now we have covered most of the driver level functions in the OTX API. However,
there are a few steps that an application always needs to perform. The very first thing
an application must do is to connect to the driver. This is performed using the OtxDrv-
ConnectLib() function, as illustrated in Example 21. The OtxDrvConnectLib() func-
tion initializes the driver API library and sets up a communications channel to the
kernel mode driver.

Example 21. Connecting to the OTX Driver.

After the application has connected to the driver, it may want to verify and display to
the user the name and revision of the driver in use. This can be accomplished with the
OtxDrvIdent() function, as shown in Example 22.

OTX_HANDLE hMyObject;
OTX_RESULT nResult;
OTX_CHAR szStrBuf[256];

nResult = OtxDrvFoo(hMyObject);

if (OTX_FAILURE(nResult)) {
 // failed, print an error message
 OtxDrvResultCode2String(hMyObject, nResult, 256, szStrBuf);
 printf(“OtxDrvFoo failed (%p) ‘%s’\n”, hMyObject, szStrBuf);
}

OTX_RESULT nResult;

nResult = OtxDrvConnectLib();

if (nResult != OTX_S_OK) {
 printf(“Unable to connect to the OTX Driver\n”);
 exit(1);
}

Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

26(29)
Programmer's Guide
Debugging and Trouble Shooting

Example 22. Identifying the driver revision and name.

At this time the application can use the various OtxDrvEnumXXXX() functions to
determined what physical and logical devices that are available in the system. The
application can also call the OtxDrvGetBoardData() function to get the serial number
and revision information on any specific board in the system.

Upon exit, it is very important that the application calls the function OtxDrvRe-
leaseLib(), as this function releases all the logical devices, pipes, and event queues
created by the application. The use of OtxDrvReleaseLib() is emphasized in Example
23.

Example 23. Driver cleanup upon exit.

11. Debugging and Trouble Shooting

After reading this far we are naturally so proficient with the OTX API that there will
hardly be any need for debugging or trouble shooting. Our application will simply
work. But just in case, let’s highlight some of the debugging facilities provided by the
OTX API.

The enumerate functions for physical and logical devices introduced in the previous
chapter can be a valuable debugging tools as well. In addition, the OTX API provides
the following functions:

• OtxDrvGetDeviceStats()

• OtxDrvGetPhysicalDeviceData()

• OtxDrvGetLogicalDeviceData()

#define MY_BUF_LEN 256
OTX_RESULT nResult;
OTX_CHAR szNameBuf[MY_BUF_LEN];
OTX_CHAR szRevBuf[MY_BUF_LEN];

nResult = OtxDrvIdent(MY_BUF_LEN, szNameBuf, MY_BUF_LEN, szRevBuf);

if (OTX_SUCCESS(nResult)) {
 printf(“Using Driver ‘%s’, Revision ‘%s’\n”, szNameBuf, szRevBuf);
}

// Delete allocated resources. IMPORTANT TO CALL BEFORE EXIT!!
OtxDrvReleaseLib();
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

27(29)
Programmer's Guide
Recommended Program Flow
• OtxDrvGetEventQueueData()

• OtxDrvGetPipeData()

Once the application has acquired a handle to a driver object, the above listed func-
tions can be used to retrieve the internal data kept for these objects. The debugging
data can be used to verify that the objects have been connected properly and that the
containment hierarchy has been set-up as it should.

Finally, the OtxDrvGetState() function can be used to verify that the driver objects are
in WORKING state. Any AUTO BLOCKED objects indicate a software or even possi-
bly a hardware problem.

12. Recommended Program Flow

The OTX driver expects that the various driver objects are created, connected, and ini-
tialized in a certain order. The flow chart in Figure 7 describes a recommended flow
for an application using the OTX driver.
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

28(29)
Programmer's Guide
Recommended Program Flow
Figure 7. Recommended program flow for OTX Driver Initialization and
use.

Connect to the Driver: OtxDrvConnectLib()

Open Physical Devices: OtxDrvOpenPhysicalDevice()

Create Pipes: OtxDrvCreatePipe()

Connect Pipes to Physical Devices: OtxDrvConnectPipe()

Create Logical Devices: OtxDrvCreateLogicalDevice()

Create Notification Events and Queues: OtxDrvCreateEventQueue()

Connect Logical Devices: OtxDrvConnectLogicalDevice()

Initialize Physical and Logical Devices

Enable Driver Objects: OtxDrvEnable()

Sleep and Wait for Events: OtxDrvWaitForMultipleEvents()

Success

Success

Success

Success

Success

Success

Success

Success

Success

Driver Notification
Event

User Event

Process User Command Retrieve Event Data
OtxDrvGetEventData()

Exit

OtxDrvReleaseLib()

Failure

Failure

Failure

Failure

Failure

Failure

Failure

Failure

Failure

Failure

Failure

Quit
Doc. No. 1412-1-SAA-1006-1 Rev. 1.1 October 31, 2006
Copyright (C) Odin TeleSystems Inc., 1999-2006

Doc. No. 1412-1-SAA-1006-1
For more information on this product, please contact:

Odin TeleSystems Inc.
800 East Campbell Road, Suite 334

Richardson, Texas 75081-1873
U. S. A.

Tel: +1-972-664-0100
Fax: +1-972-664-0855

Email: Info@odints.com
URL: http://www.odints.com/

Copyright (C) Odin TeleSystems Inc., 1999-2006

	1. Table of Content
	2. Introduction
	3. API Coding Convention
	4. Driver Objects and Handles
	4.1 Handles
	4.2 Events and Event Queues
	4.2.1 Driver Events
	4.2.2 Notification Events
	4.2.3 Event Queues

	4.3 Physical Devices
	4.4 Logical Devices
	4.5 Pipes

	5. OTX Driver Model
	6. Blocking vs. Non-Blocking Function Calls
	7. Event Driven vs. Polling Operation
	8. Generic Driver Object Functions
	8.1 Enabling
	8.2 Disabling
	8.3 Checking State
	8.4 Resetting
	8.5 Closing

	9. Error Handling
	10. Initialization and Cleanup
	11. Debugging and Trouble Shooting
	12. Recommended Program Flow

